Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Emerg Infect Dis ; 27(2): 663-666, 2021 02.
Article in English | MEDLINE | ID: covidwho-1389113

ABSTRACT

Antibody response against nucleocapsid and spike proteins of SARS-CoV-2 in 11 persons with mild or asymptomatic infection rapidly increased after infection. At weeks 18-30 after diagnosis, all remained seropositive but spike protein-targeting antibody titers declined. These data may be useful for vaccine development.


Subject(s)
COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19/blood , COVID-19/virology , Child , Female , Humans , Longitudinal Studies , Male , Middle Aged , Nucleocapsid Proteins/blood , Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Vietnam , Young Adult
2.
Anal Chim Acta ; 1147: 30-37, 2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1012278

ABSTRACT

Simple, low-cost, and sensitive new platforms for electrochemical immunosensors for virus detection have been attracted attention due to the recent pandemic caused by a new type of coronavirus (SARS-CoV-2). In the present work, we report for the first time the construction of an immunosensor using a commercial 3D conductive filament of carbon black and polylactic acid (PLA) to detect Hantavirus Araucaria nucleoprotein (Np) as a proof-of-concept. The recognition biomolecule was anchored directly at the filament surface by using N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride and N-Hydroxysuccinimide (EDC/NHS). Conductive and non-conductive composites of PLA were characterized using thermal gravimetric analysis (TGA), revealing around 30% w/w of carbon in the filament. Morphological features of composites were obtained from SEM and TEM measurements. FTIR measurement revealed that crosslinking agents were covalently bonded at the filament surface. Electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the evaluation of each step involved in the construction of the proposed immunosensor. The results showed the potentiality of the device for the quantitative detection of Hantavirus Araucaria nucleoprotein (Np) from 30 µg mL-1 to 240 µg mL-1 with a limit of detection of 22 µg mL-1. Also, the proposed immunosensor was applied with success for virus detection in 100x diluted human serum samples. Therefore, the PLA conductive filament with carbon black is a simple and excellent platform for immunosensing, which offers naturally carboxylic groups able to anchor covalently biomolecules.


Subject(s)
Antibodies, Viral/immunology , Immunoassay/methods , Nucleocapsid Proteins/immunology , Printing, Three-Dimensional , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , COVID-19/diagnosis , COVID-19/virology , Dielectric Spectroscopy , Electrodes , Orthohantavirus/isolation & purification , Orthohantavirus/metabolism , Hantavirus Infections/diagnosis , Hantavirus Infections/virology , Humans , Immunoassay/instrumentation , Limit of Detection , Nucleocapsid Proteins/blood , SARS-CoV-2/isolation & purification , Soot/chemistry
3.
Front Cell Infect Microbiol ; 10: 470, 2020.
Article in English | MEDLINE | ID: covidwho-797396

ABSTRACT

Objective: To explore the diagnostic value of serum severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein assay in the early stages of SARS-COV-2 infection. Methods: Serum N protein level in SARS-COV-2 infected patients and non-SARS-COV-2 infected population was measured by enzyme-linked immunosorbent assay (ELISA) double antibody sandwich assay. Colloidal gold immunochromatography assay was used to detect serum N protein antibodies in the above populations. Results: Fifty cases of SARS-CoV-2 nucleic acid-positive and SARS-CoV-2 antibody-negative patients had a serum N protein positivity rate of 76%. Thirty-seven patients who were positive for serum SARS-CoV-2 antibody after infection had a serum SARS-CoV-2 N protein positivity rate of 2.7%. Serum N protein test results of 633 non-SARS-COV-2 infected patients, including pregnant women, patients with other respiratory infections, and individuals with increased rheumatoid factor were all negative, with serum N protein concentration <10.00 pg/mL at 100% specificity. Using SPSS 19.0 to calculate the receiver operating characteristic curve, the area under the curve was determined to be 0.9756 (95% confidence interval 0.9485-1.000, p < 0.0001), and sensitivity and specificity were 92% (95% confidence interval 81.16-96.85%) and 96.84% (95% confidence interval 95.17-97.15%), respectively. The best CUT-OFF value was 1.850 pg/mL. Conclusion: The measurement of serum SARS-COV-2 N protein has a high diagnostic value for infected patients before the antibody appears and shortens the window period of serological diagnosis. It is recommended that the manufacturer establish two different CUT-OFF values according to the purpose of the application. One CUT-OFF value is used for the diagnosis of clinical SARS-COV-2 infection, and the other is used to screen out as many suspected cases as possible.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Nucleocapsid Proteins/blood , Pneumonia, Viral/diagnosis , Antibodies, Viral/blood , Betacoronavirus/isolation & purification , Biomarkers/blood , COVID-19 , COVID-19 Testing , Coronavirus Infections/blood , Coronavirus Nucleocapsid Proteins , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , Pregnancy , SARS-CoV-2 , Sensitivity and Specificity
4.
Emerg Microbes Infect ; 9(1): 1965-1973, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-725731

ABSTRACT

Serology is a crucial part of the public health response to the ongoing SARS-CoV-2 pandemic. Here, we describe the development, validation and clinical evaluation of a protein micro-array as a quantitative multiplex immunoassay that can identify S and N-directed SARS-CoV-2 IgG antibodies with high specificity and sensitivity and distinguish them from all currently circulating human coronaviruses. The method specificity was 100% for SARS-CoV-2 S1 and 96% for N antigen based on extensive syndromic (n=230 cases) and population panel (n=94) testing that also confirmed the high prevalence of seasonal human coronaviruses. To assess its potential role for both SARS-CoV-2 patient diagnostics and population studies, we evaluated a large heterogeneous COVID-19 cohort (n=330) and found an overall sensitivity of 89% (≥ 21 days post onset symptoms (dps)), ranging from 86% to 96% depending on severity of disease. For a subset of these patients longitudinal samples were provided up to 56 dps. Mild cases showed absent or delayed, and lower SARS-CoV-2 antibody responses. Overall, we present the development and extensive clinical validation of a multiplex coronavirus serological assay for syndromic testing, to answer research questions regarding to antibody responses, to support SARS-CoV-2 diagnostics and to evaluate epidemiological developments efficiently and with high-throughput.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Nucleocapsid Proteins/blood , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/blood , Aged , Antigens, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/standards , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Female , Humans , Longitudinal Studies , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Neutralization Tests , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Protein Array Analysis , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
5.
Eur J Clin Microbiol Infect Dis ; 39(12): 2271-2277, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-652076

ABSTRACT

We developed a chemiluminescence immunoassay method based on the recombinant nucleocapsid antigen and assessed its performance for the clinical diagnosis of severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infections by detecting SARS-CoV-2-specific IgM and IgG antibodies in patients. Full-length recombinant nucleocapsid antigen and tosyl magnetic beads were used to develop the chemiluminescence immunoassay approach. Plasmas from 29 healthy cohorts, 51 tuberculosis patients, and 79 confirmed SARS-CoV-2 patients were employed to evaluate the chemiluminescence immunoassay method performance for the clinical diagnosis of SARS-CoV-2 infections. A commercial ELISA kit (Darui Biotech, China) using the same nucleocapsid antigen was used for the in-parallel comparison with our chemiluminescence immunoassay method. The IgM and IgG manner of testing in the chemiluminescence immunoassay method showed a sensitivity and specificity of 60.76% (95% CI 49.1 to 71.6) and 92.25% (95% CI 83.4 to 97.2) and 82.28% (95% CI 72.1 to 90.0) and 97.5% (95% CI 91.3 to 99.7), respectively. Higher sensitivity and specificity were observed in the chemiluminescence immunoassay method compared with the Darui Biotech ELISA kit. The developed high sensitivity and specificity chemiluminescence immunoassay IgG testing method combined with the RT-PCR approach can improve the clinical diagnosis for SARS-CoV-2 infections and thus contribute to the control of COVID-19 expansion.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Luminescent Measurements/methods , Nucleocapsid Proteins/blood , Pandemics , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Nucleocapsid Proteins , False Positive Reactions , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Phosphoproteins , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index
6.
Emerg Microbes Infect ; 9(1): 940-948, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-155426

ABSTRACT

The emerging COVID-19 caused by SARS-CoV-2 infection poses severe challenges to global public health. Serum antibody testing is becoming one of the critical methods for the diagnosis of COVID-19 patients. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and spike (S) protein after symptom onset in the intensive care unit (ICU) and non-ICU patients. 130 blood samples from 38 COVID-19 patients were collected. The levels of IgM and IgG specific to N and S protein were detected by ELISA. A series of blood samples were collected along the disease course from the same patient, including 11 ICU patients and 27 non-ICU patients for longitudinal analysis. N and S specific IgM and IgG (N-IgM, N-IgG, S-IgM, S-IgG) in non-ICU patients increased after symptom onset. N-IgM and S-IgM in some non-ICU patients reached a peak in the second week, while N-IgG and S-IgG continued to increase in the third week. The combined detection of N and S specific IgM and IgG could identify up to 75% of SARS-CoV-2 infected patients in the first week. S-IgG was significantly higher in non-ICU patients than in ICU patients in the third week. In contrast, N-IgG was significantly higher in ICU patients than in non-ICU patients. The increase of S-IgG positively correlated with the decrease of C-reactive protein (CRP) in non-ICU patients. N and S specific IgM and IgG increased gradually after symptom onset and can be used for detection of SARS-CoV-2 infection. Analysis of the dynamics of S-IgG may help to predict prognosis.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Nucleocapsid Proteins/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Antibodies, Viral/blood , C-Reactive Protein/analysis , C-Reactive Protein/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Critical Care/statistics & numerical data , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Male , Middle Aged , Nucleocapsid Proteins/blood , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/blood
SELECTION OF CITATIONS
SEARCH DETAIL